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In this paper we present a comparison of trajectory optimization approaches.
for the minimum fuel rendezvous problem. Both indirect and direct meth-
ods are compared for a variety of test cases. The indirect approach is
based on primer vector theory. The direct approaches are implemented
numerically and include Sequential Quadratic Programming (SQP), Quasi-
Newton. and Nelder-Meade Simplex. Several cost function parameteriza-
tions are considered for the direct approach. We choose one direct approach
that appears to be the most flexible. Both the direct and indirect methods
are applied to a variety of test cases which are chosen to demonstrate the
performance of each method in different flight regimes. The first test case
is a simple circular-to-circular coplanar rendezvous. The second test case is
an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit
phasing maneuver sequence in a highly elliptic orbit. For each test case we
present a comparison of the performance of all methods we consider in this

paper.

INTRODUCTION

The minimum fuel rendezvous problem has received considerable attention in the literature and
numerous approaches to both posing and solving the problem have been developed. The basic objective
is to find a minimum solution to a two-point boundary value problem (TPBVP) that has multiple feasible
solutions. The primary difference between approaches is the choice of independent variables and how
the TPBVP is posed in terms of these variables. Methods also differ on how constraints are handled.
In the next few paragraphs we give a brief overview of the methods considered in this paper. We also
discuss the test problems we used to allow a comparison of each method we consider for different flight

regimes.

This paper deals with the problem of optimizing trajectories where the maneuvers can be modeled
impulsively. In general, two approaches are utilized for optimization: direct and indirect.! Both ap-
proaches will be compared in this investigation. A survey of the rendezvous problem is provided by
Jezewski et al.?

A direct optimization method tries to minimize the cost function by directly varying the control (in-
dependent) variables. The methods employed for the optimization process are mathematical program-
ming techniques.® The mathematical programming techniques utilized in this paper include Sequential
Quadratic Programming (SQP), Quasi-Newton, and Nelder-Meade Simplex. (Other techniques, such as
Genetic Algorithms, are under current investigation but are not discussed here). For direct optimization
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the choice of independent variables and constramts is extremely important. For examiple. suppose that
there are n impulses in the trajectory of interest. Then. two possible choices {or independent variables
are (1) the actual AV’s, or (2) the impulse locations and times. In this paper. we find the option of using
the impulse locations and times more effective. This is consistent with previous work by Brusch.? Hence,
we utilize a Lambert-tvpe approach with implicit position continuity. Thus, as the impulse locations
change, new arcs are computed utilizing either Lambert arcs (in the two-body model) or differentially
corrected ares (allows for more complex odels than the two-body model). The result of computing the
lambert arcs is a path continuous trajectory with velocity discontinuities. The velocity discontinuities
are then utilized to formulate the cost function. Other approaches are possible but include the addition
of position contimiitv as constraints.”

An indirect optimization method tries to minimize the cost funcrion by considering its varations.
thus it involves Caleulus of Variations { COV). It leads to two-point boundary value problems in the

imal control variables are usuaily
readily available. Primer vector theory can be considered to be a byproduct of applvin

co-siate variables. Once the co-state variables are obtained. the op

di 2 the Caleulus
of Variations to the problem of minimizing the fuel usage of impulsive trajectories. TFerhaps more
importantly, primer vector theory can be utilized to “find” the optimal number of impulses. A survev
of primer vector theory is presented by Guzman® et al

The parameterization of the cost function chosen in this work ensures that for every cost function
evaluation, the rendezvous constraints are satisfied implicitly. Hence. from the point-of-the-view of a
numerical optimizer, the problem is unconstrained. Several numerical optimization routines are con-
sidered. Three of the routines are products of The Mathworks and are available in their Optimization
Toolbox. The Mathworks’ routines that we employ are fmincon, fminunc, and fminsearch. The fmincon
function is an SQP algorithm, fminunc is a Quasi-Newton algorithm, and fminsearch is a Nelder-Meade
Simplex algorithm. For a detailed discussion of The Mathworks’ routines and their implementations,
we refer the reader to The Mathworks Optimization Toolbox” documentation. We also use SNOPT, an
SQP algorithm developed by Gill® et. al For details on SNOPT we refer the reader to the user’s guide
for SNOPT® 5.3. For the indirect method we develop software in Matlab that uses a fully automated
algorithm which implements the primer vector theory first developed by Lawden.®

We employ three test cases to compare the performance of each trajectory optimization method
in different flight regimes. The first test case is a simple circular-to-circular, coplanar rendezvous. The
second test case is an elliptic-to-elliptic, line of apsides rotation. The final test case is a phasing maneuver
in a highly elliptic orbit. For each test case we generate numerous initial guesses. The initial guesses are
generated using simple intuition. The times and locations of the initial and final maneuvers are chosen
based on experience. Given the initial and final burn locations we generate a two-burn rendezvous
sequence. Multiple maneuver sequences are generated by placing small maneuvers, equally spaced in
time, along two maneuver initial guesses. Sequences of two, three, and four burns are considered. The
performance of all methods for the test cases described above is presented in the final section. It is
difficult to provide a single metric that can conclude which method is the best. Hence we have provided
a variety of statistics to illustrate the performance of all of the trajectory optimization approaches we
consider. It should be noted that we have not considered the rate of convergence Lo be a measure
of importance. Since all methods are acceptably fast, we use metrics based on the total AV of the
converged solution to be the primary measures of performance.

To solve the minimum fuel rendezvous problem we must first develop a mathematical model. In the
next section we discuss the distinction between an orbit transfer and an orbit rendezvous and develop a
mode] for the rendezvous problem.

PROBLEM STATEMENT

The minimum fuel rendezvous problem can be posed in numerous ways. The primary difference
between approaches is the choice of independent variables, how the boundary value problem is posed in
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terrus of the independent variabies. and how the constraint functions are handled. Tt is nseful ar this
point to make a clear distinction between a rendezvous problem and a transfer problem. [n an orbit
transfer problem we are only concerned with finding a maneuver sequence that will take a spacecraft
from some position in its initial orbit. to some position in the desired final orbit. For a transfer. the
initial maneuver can geeur anvwhere along the initial orbit. and the fnal maneuver can occur anywhere
along the final orbit, without concern for the orbit phasing. However. for a rendezvous problem, we have
the additional constraims determined by the time and place of the spacecraft in the initial orbit, and
the time and place of the target spacecraft in its orhit. In this section we develop a mathematical model
of the rendezvous problem. In later sections the model is used to develop optimization algorithms to
find minimum fuel solutions.

A diagram to aid in Nusiraling the general hnpulsive rendezvous problem s shown in Figure 1. The
arc denoted P, represents the path of the spacecraft in its initial orbit. Similarly, the arc denoted Ty
reprecents the path of path of the spacecraft in its final orbit, Throughout the paper a supsrseript *=
sign is used to denote a condition immediately prior to an impulsive maneuver, and a superscript -
sign is used to denote a condition inmediately following an impulsive maneuver. According o these

conventions, we can vrite the conditions for the ** burn as,
-+ - — 7/
r; = r; (1)
. -— i ¢
i ti (2)
— - +
AV, = V7 -V; (3)

where rj‘ and r; are the positions immediately before and after the it" burn respectively, tf and ¢
are the times immediately before and after the i" burn respectively, and Vf and V[ are the velocity
vectors immediately before and after the i** burn respectively. The constraints in Egs.(1) and (2) are a
result of the definition of an impulsive maneuver.

ro

Figure 1: Impulsive Orbit Transfer Diagram

There are additional constraints that must be satisfied at the boundaries, and at the interior impulses
which are imposed by the orbit dynamics. We assume that the dynamics for the entire maneuver sequence
are given by

) r

P=—pz (4)
Let ry = f(r,. vo,to,t5) and vy = g(re. Vo, to, ts) bé the solution to Eq. (4), with the initial conditions
(ro, Vo, to) and the final time of t;. For an interior impulse ¢ % 1, ¢ % n, and n > 2. The additional



constraints that must be satished at an interior impuise are given by

vy = f(roy Vi fiogf) (5)
V«:L = g(ri—-livi—l:tl-—lztl) (6)

The constraints that must be satisfied at the initial boundary are given by

S
r], = f(r07V0)t07t’l) (7)
4+
vl = g(rorvo-fa-fl) (8)
where (r,, v,,t,) are the position and velocity of the initial orbit at the reference epoch t,. and #; is the
time of the first maneuver. A similar set of constraints apply at the final bonudary and are give by
f(rf:vf: ff f‘n) (9)
v, o= glrpovybpoby) ’ (10;
where {ry, vy 17} are the position and velocity of the initial orbit at the reference epoch ty, and t, is
the time of the last maneuver. Without loss of generality, we can appropriately formulate the optimal

control problem to ensure that the constraints rj” = r; and t] = ¢ are satistied implicitly. For the
remainder of this work we drop the superscripts on r and f, and assume

ri= rf= r] (11)
ti= tF= ro (12)

In summary, the probiem is to find the set (v, v, v, t:), where i = 1,2..n and n > 2, that satisfies
the constraints

ry = f(re,vo to,t1) (13)
vi = g(re:Ve.te 1) (14)
ri = flric1,viortiog,ts) : (13)
Svpo= g(rio1,Viey, tio1, by) (16)
rp = f(rf,vf,tf,tn) (17)
vi = glry,vytsta) : (18)

and that is a minimum solution to the function
J =Y AV (19)
i=1 b

where n is the number of maneuvers, the set (r,, v,,t,) defines the initial orbit and the set (r;, vy, ts)
defines the final orbit.

There are two main methods available for solving the optimal control problem, including direct and
indirects approaches. Within each method there are numerous possible implementations. Often methods
are actually a combination of indirect and direct techniques. For direct methods, the parameterization of
the problem depends on the type of optimizers available. Indirect methods are sensitive to the constraints
and often require complete reformulation if new constraints are imposed. In the next two sections we
discuss several approaches for solving the minimum fuel rendezvous problem using both indirect and
direct methods. ' ‘

DIRECT APPROACH

The success of a direct method is intimately dependent on the choice of independent variables and
the constraint function formulation. In this section we discuss three parameterizations for solving the
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minimum fuel rendezvous problem using direct methods. There are numeronus possible parameterizations
and comparing all approaches is bevond the scope of this work. We categorize the paraneterizatious
we consider into two groups called the Feasible Iterate Approach and the Infeasible Iterate Approach.
We present a briel comparison of the parameterizations, and the most promising method is chosen for
further development. For this work we choose a Feasible Iterate Approach for reasons expiained laver.
This section is concluded with a discussion of several numerical optimization packages used in this work.

Objective Function Parameterizations

There are numerons approaches to solving the miinimum fue! rendezvous problem using direct merth-
ods. For convenience we break down the direct approaches considered here into two categories called the
Feasible Iterate Approach and the Infeasible Iterate Approach. In the Feasible Iterate Approach. each
evaluation of the objective function is also a feasible solution that satisfies the rendezvous conditions.
Hence, from the point of view of the optimizer. the problem is unconstrained. The Feasible Iterate
Approach requires that for each objective function evaluation TBPVP is solved. The Feasible Iterate
Approach also requires a careful selection of independent variables for the objective function parameteri-
zation. In the Infeasible Iterate Approach. there is less restriction on the choice of independent variables,
however, the constraints must be defined carefully, and the optimizer must be able to handle nonlinear
constraints. For continuity; we present the discussion of alternative parameterizations in Appendix 1.

Here we present the parameterization chosen for this work.

Our Choice of independent variables is as follows:

Given: (ro, Vo, to) and (ry, vy, ts) (20)

Choose the independent variables:
i  i=1,2.n (21)
r; i=23.n~-1 (22)

where t; are the times of the maneuvers, and r; are the positions of the intermediate burns. Given the
independent variables defined in Eqs.(21) and Eqs.(22), we must develop an algorithm to determine the
total AV of the maneuver sequence. The boundary conditions ry, v;r, rn, and v, are determined using
Eqgs.(13),(14),(17),and (18), where ¢; and t, are known from Eq.(21). After solving for the boundary
conditions we know the times and positions of all the maneuvers. Therefore, we can solve for the
velocities before and after each maneuver, by solving Lambert’s problem for each of the n — 1 trajectory
segments. There are numerous well-known approaches to solving Lambert’s problem. . We choose a
method developed by Howell and Pernicka'® and further developed by Guzman.!! The method developed
by Howell is chosen because it can solve Lambert’s problem with perturbations included, as well as when
there is more than one significant gravitational body. Perhaps more importantly, Howell demonstrated
that using the method described below, we can provide analytic approximations for the gradient of the
total AV with respect to the independent variables chosen in Egs. (21) and Egs.(22). The algorithm is
described as follows. Given an initial position r;_;, and an initial velocity v;_1 both at time t;_;, find
év;_1 applied at time ¢;.; so that we achieve r; at ;. Figure 2 illustrates the problem. The dark black
arc denotes the path a spacecraft would follow if no §v,_; is applied. For this arc, the final position
denoted by r, is not equal to the desired final position r;. Hence ér; # 0. The dashed arc denotes the
trajectory that is the solution to Lambert’s problem For this arc r; = rg, or ér; = 0. To solve for dv;_,;
such that ér; = 0 first deﬁne X as

x = [ g J (23)

\%

then éx; is given by
0x; = P (ti tim1) 6%y (24)



ri-1 Tq r;

Figure 2: Ttustration of One Trajectory Are

where t; and #;_, are fixed. We can write @ (t;,£;,.1) as

1
Bt = | g DT (25)
1,5— ii—

Using the fact that ér;_; = 0 we can write

6!'.; = Bi‘,:_lévt-_l . (26)
Solving for §v;_1 we see that )
5V1'_1 = B;i_léri 7 (27)
From inspection of Fig. 2 we can write ‘
r;+0r; =r, (28)
Solving for dr; we have
éri =r, — 1y (29)

Substituting Eq.(29) into Eq.(27) yields
ovioy =B, (re - r;) (30)

We can solve for dv;..; such that dr; is zero by iterating on Eq.(30) until (r, — r;) meets a user defined

tolerance. It is important to note that this approach assumes that B, , exists. For cases when B[, _;

is not invertible we use a method by Gedeon!? to solve the TPBVP. We solve all n - 1 trajectory arcs
using the algorithm defined above, then the AV is calculated using Eq.(19). Note that although the
algorithm above can be extended to provide a gradient approximation, we have used finite differencing
for gradients in this work. Analytic approximations for the gradient are a topic-of current research.

There are several other concerns to address to completely define the objective function parameteriza-
tion. We also must choose appropriate time and coordinate systems to express the independent variables
given in Egs. (21) and (22). There are several issues in choosing a time parameterization that must be
considered. The first issue is to select appropriate units, the second is to select an appropriate reference
epoch. We choose the units of seconds for time, and reference each time ¢; to the reference epoch ¢y
given in Eq. (20). The positions in Eq. (22) are expressed in cartesian coordinates in the Mean of J2000
Earth Equatorial system and the units are in km. '

With the parameterization of the cost function described above, the rendezvous conditions are sat-
isfied implicitly for every cost function evaluation. Hence, the problem is essentially an unconstrained
optimization problem and we are free to use unconstrained as well as constrained optimization techniques
to find a minimum AV solution. It is exceedingly rare that both TPBVP methods described above fail to
converge. In the case that neither rhethod converges we must “inform” the optimizer. This is discussed
in a subsequent section. In the next subsection we discuss the numerical optimization packages we use
in this work.



Direct Optimizers

There are numerous optimization packages available that solve unconstrained optimization problems.
We investigate the performance of four routines for the parameterization of the minirmun fuel rendezvous
problem chosen above. Three of the routines are products of The Mathworks and are available in their
Optimization Toolbox.” The first routine is an SQP algorithm cailed fmincon. The second routine is a
quasi-Newton algorithm called fminunc. The third routine is a Nelder-Meade simplex algorithm and is
called fminsearch. For a detailed discussion of the optimization routines developed by The Mathworks
we refer the reader to the Optimization Toolbox documentation.” The fourth numerical optimization
routine we employ is an SQP routine developed by Gill¥ et al. called SNOPT. For a detailed discussion
of SNOPT we yefer the reader 1o the SNOPT® 5.3 documentaiion.

Numerical Issues

To avoid numerical difficulties the independent variables and the objective function values are normal-
ized to be on the order of one. Secondly, all derivatives are calculated using finite differencing. Providing
analytic derivatives for gradient based methods is a topic of current research. The final numerical issue
occurs when both TPBVP solvers fail to converge. This is exceedingly rare. However when it occurs we
must “inform” the optimizer. SNOPT has a built in capability to step back from a poorly conditioned
state vector. Hence, for SNOPT, if both TPBVP solvers fail, the appropriate message is sent to SNOPT
and the SNOPT steps away from the poorly conditioned state. However, The Mathworks routines do
not have this capability yet. As a temporary solution, when using a Mathworks’ routine, in the event of
a poorly conditioned state vector we pass back a crude approximation of the total AV.

To solve the minimum fuel rendezvous problem using direct methods we must choose an appropriate
parameterization of the problem, and an appropriate numerical optimization routine. In this section
we discussed some choices involved in choosing a specific parameterization. We chose one method that
performed well in a preliminary comparison. We also discussed several numerical optimization routines
we employ and some numerical issues one must deal with to ensure adequate performance. In the next
section we discuss an indirect approach to solve the minimum fuel rendezvous problem.

INDIRECT APPROACH

In this section, we present a review of the primer vector theory as well as the main challenges
involved in its implementation.?® Primer vector theory!* is an optimization technique based on calculus
of variations. The theory has several appealing features including the indication of when and where to
add an impulse to a non-optimal trajectory, and a visual assessment of the optimality of neighboring
solutions.

Primer Vector Theory

Primer vector theory provides a set of first order necessary conditions, which a trajectory must meet
to be locally optimal. The necessary conditions, first derived by Lawden, are expressed in terms of
the primer vector, which is defined as the adjoint to the velocity vector in the variational Hamiltonian
formulation.!® If any of Lawden’s conditions are violated, the rendezvous trajectory is not optimal and
we can use the primer vector history to obtain information on how to improve its AV cost. In his initial
work, Lawden solved a fixed-time rendezvous and his theory was further extended by Lion and Handels-
man and later, by Jezewski and Rozendaal to solve the n-impulse optimal rendezvous problem.1%:16 A
more detailed derivation of the primer vector theory is provided by Hiday.!” For the rendezvous problem
considered in this paper, we can express the primer vector equations using calculus of variations theory.



The initial trajectory or first-guess. is labeled as the reference rrajectory. Since primer vector is a fyst-
order theory based on Jucal variations. it will converge to local optimal neighboring trajectories of the
reference trajectory. Therefore, the optimal solution is highly dependent on the reference trajectory b
it will also depend on other design parameters discussed later in this section. The primer vector obeyvs
the following equation. also known as the second order canonical form of the Euler-Lagrange equation,

L P .T
p-u(—;;+3r—5&§pm)) (31)

where r is the satellite position vector on the reference trajectory. p is the primer vector and y is the
Earth’s gravitational constant. The satellite position is found using Eq. {4). As evident in Eq. (31).
the primer vector state can not be derivad simultaneously with the spacecraft state. The spacecraft
trajectory must be propagated first for the primer vector history to be computed. Using caiculus of
variations. Lawden derived four necessarv conditions sxpressed in terms of the primer vector defined e
Eq. (31} for an optimal rendezvous trajectory:

1. The primer vector must he ! (i.e. the primer vector and its first derivative are continuous) for
the entire history.

2. Between impulses, ||p}| = p <= 1. Impulses occur when p = 1.
3. At an impulse, p = p = f. where 4} is the optimal thrust direction.

4. At all interior impulses (not at the initial or final times) p-p = 0. This condition has implications
on the slope of the primer vector magnitude since

dilel] _ 4 .)1/2_?_'2
dt dt - el

Therefore, 51%—?“ = 0 at the intermediate impulses. Also, for convenience, let p = 1%’;%“.

These conditions are necessary {(but not sufficient) for an optimal trajectory. In this paper. a trajectory
that meets the above conditions will be called an optimal trajectory. When solving a rendezvous problem
using primer vector theory, we first need to evaluate the primer vector history along the reference
trajectory or initial guess. Solving for the primer vector history is equivalent to solving a TPBVP. Let’s
first assume that we are solving a two-burn rendezvous problem. We know from Lawden’s conditions
that, at an impulse, the primer vector is in the direction of the thrust vector. Thus, we can express the
initial and final primer vector as : :

AV,
Po = m, (32)
_ AV,
Pr= —_IAVfl' (33)

The initial and final primer vectors and the time-of-flight (7 — t,) are known. However, to propagate
Eq. (31), we need the complete primer initial state (po. P,)- To obtain p,, we can either use a shooting
method (TPBVP solver) or use the STM formulation from Eq. (34) below.

(B)=scw (2)=[8 8] (%) e

where A, B, C and D are 3x3 matrices, partitions of ®(t,t,). In general, using the STM is faster and
although not as accurate as the TPBVP solver, it is sufficient. Using Eq. (34), the initial derivative of
the primer vector can be expressed as:

Po=B"" (ps—A-p,) (35)



It is worthwhile noting that if B™4 is singular. p, cannot be computed using Eq. (353). In the two-body
problem. therc are three known singularities.’® Eq. (33) can be generalized for a n-impulse trajectory
by examining each individual two-burn transfer. Once the primer vector history is computed, we can
determine the optimality of the trajectory using Lawden’s necessary conditions. If any of Lawden’s
conditions are violated. the rendezvous trajectory is not optimal and we can use the primer vecior Liistory
to obtain information on how to improve its AV cost. Improving non-optimal trajectories using primer
vector theory is the main contribution of Lion and Handelsman.'® Essentially, first order variations of
the total AV are considered for different perturbed trajectories.?>17 For a non-optimal primer vector
history, two types of actions are possible to lower the AV cost: (I) moving the initial or final impulse and
(I1) adding and/or moving an interior impulse. If the epoch of the endpoints is unconstrained, an action
of type I is performed whenever the initial and/or the final primer vector magnitude slope is different
from zero. The general expression for time variations at both endpoints is given by Hiday'™ as

6J = _poHA""ol'idto - .N"IgAVf{%dtf* .“),(',\

where the initial and final time variations are given by dt, and dt; respectively. Furthermore, the initial
and final primer magnitude siopes are given by p, and f;, respectively. To have a lower cost, 4/ must
be less than zero. If the following terminology is defined, 1) initial coast (dt, > 0), 2} early departure
(dt, < 0), 3) final coast (dty < 0 ), and, 4) late arrival (dty > 0 ): then, the following four cases cover
all the non-zero primer slope combinations,

o If p, > 0 and py < 0 = Apply Initial Coast and Final Coast.

o If , > 0 and py > 0 = Apply Initial Coast and Late Arrival.

If p, < 0 and py < 0 = Apply Early Departure and Final Coast.

if po < 0 and py > 0 = Apply Early Departure and Late Arrival.

See Hiday'" for details. Of course, if the slopes are zero, no further improvement is achieved by varying
the endpoints times. If the primer vector magnitude goes above one during a coasting phase on a given
segment, an impulse is added to the trajectory (action type II) to improve the overall AV budget. This
impulse is examined by considering a neighboring path with an additional impulse. The two-impulse arc
is perturbed with the addition of a mid-impulse at some time, t,,, and position r,, + 6r,,. (The position
rm is the position along the unperturbed path at t,,.) The initial and the final times and positions,
(to, o) and (ty, ry), are fixed. The cost function variation is defined as §J = J' -~ J, where J' is the
fuel cost on the perturbed trajectory. Then, considering first order terms only, it can be shown that

§7 =c(1 - pLa), (37)

where the following are mid-impulse parameters: ¢ is the magnitude of the impulse, p,, is the primer
vector at ¢, and 7 is an unit vector in the direction of the impuise. Then, for an improvement in
cost, §J < 0. Thus, using the definition of a dot product, if ||pm|| > 1 at any time, a third impulse
is beneficial. Furthermore, the greatest decrease in the cost function will be achieved if the impulse is
applied at the maximum of ||{p,|| at time ¢,, and in the direction of . The position along the perturbed
path and the magnitude of the impulse are yet to be determined. Consider finding the position of the
impulse. Utilizing the fact that the position across an impulse is continuous, using the STM before and

" after the impulse, and utilizing the information obtained from Eq. (37), gives the following variational
equation,

br,, = cA~LBm_ 38
" Tom] (38)

where

A = D(tm,ts)Bltm,tf)""
"'D(tm tO)B(tTnv to)_l'



This equation. of course, is valid only for non-singular A and determines the position of the mid-iinpulse.
1 ) 3 ] 1
To estimate the magnitude, ¢. of the impulse. the expression for the cost on the perturbed path. J', can
=

be expressed as a function of ¢ and minimized. The mid-impulse should decrease the cost but might ner
produce an optimal trajectory in the sense of Lawden. The subsequent optimization of the three-impulse
trajectory is presented next. For a three-impulse ave, if the fime and pesition of the mid-impulse are
allowed to vary, it can be shown that,

67 = (Apm)T drp + (AH,,) dtom (39)

where Ap,, and AH,, are. respectively. the primer vector and the Hamiltonian differences at the im-
pulse. If the trajectory is indeed optimal. the first cost variation must vanish. Thus. it is required that.
App, = 0 and. AH,, = 0. 1t can be shown that AH,, = p;Tvy — prlvE. In an interesting “mix™. a
direct optimization method can be applied to vary the mid-impulse time and position to meet the above
conditions. In this investigation, following Hidav.'” the Broyvden-Fietcher-Goldfarb-Shanno, (BFGS).

algorithm 15 used.

Primer Vector Implementation

The primer vector theory described above was implemented in Matlab in tool we call PVAT. PVAT has
a fully automated algorithm, which iterates following the primer vector principles to optimize a non-
optimal reference trajectory. Most of the time multiple actions for improvements are possible. However,
there is yet no mathematical theory that determines the optimal sequencing of the actions and, in gen-
eral, different sequencing will lead to different neighboring solutions. One way of solving this problem is
to combined Egs. (36) and (39) to form a unique cost function gradient. This gradient is then used in the
BFGS optimization algoritlun to simultaneously move the endpoints times and the midcourse impulses
position and time. A separate check for the addition of an impulse is then required. In this paper, we
choose to implement a sequential algorithm where the endpoint times and the midcourse impulses are
varied with separate PVAT iterations. Each time the underlying trajectory is changed, the algorithm
recomputes the primer vector data and re-iterates until no improvement can be made. A conceptual
flowchart of PVAT is shown in Fig. 3.

First, the initial and final endpoint gradients are evaluated to check whether their values are greater
than zero within some specified tolerance ¢;. Note that only one endpoint is moved at a time for a given
iteration and the priority is given to the boundary with the highest gradient value. To determine the de-
parture/arrival state which corresponds to a zero initial slope, we implemente a bissection method. Both

" endpoint algorithms being identical, only the initial boundary is discussed here. Whenever the primer
magnitude slope, P, is positive the departure state is propagated forward, otherwise it is propagated
backward. To quickly recompute the trajectory data, we use a Lambert solver. The primer magnitude
slope is then updated for the new trajectory and the process is repeated until the value of the slope is be-
low the tolerance. Whenever there are internal impulses, the norm of the internal gradient is evaluated.
The midcourse burn(s) are moved whenever the norm exceeds a specified tolerance €m,. To move the
midcourse impulses states, we use the BFGS minimization technique. This variant of the Quasi-Newton
method uses an approximation of the Hessian matrix instead of its direct evaluation. The approximation
formula is called a BFGS update. Finally, if the primer vector is above some maximum value, P threshoid,
during a coasting arc, an impulse is added to the trajectory. Note that theoretically the threshold value
is one but for numerical implementation, the value is typically chosen to be slightly higher than one. The
value of perturbation impulse is computed using an estimate derived by Jezewski.1® However, we need
to ensure that its magnitude remains small for the theory to be valid. In this paper, we implemented
two different algorithms labeled PVAT1 and PVAT?2 respectively. For PVATI, the algorithm was not
permitted to add a burn in spite of indication of potential improvements by the primer vector history.
The second implementation permitts the addition of burns to the rendezvous trajectory to take full
advantage of the primer vector theory. However, for practical reasons,we limited the number of burns
to a maximum of six. For this first version of the code, the equations where not non-dimensionalized
which means that the choices of the various tolerance are specific to the problem solved and that the
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Figure 3: PVAT Conceptual Flowchart

final optimal solution will depend on their value.

TEST CASES

In order to compare the performance of each optimization method we utilize three test cases. The
test cases are chosen to investigate the performance of the each method in different flight regimes. The
first test case is a low-Earth, circular-to-circular, coplanar rendezvous. The second test case is an elliptic-
to-elliptic line of apsides rotation. The third case is a highly elliptic orbit phasing sequence. For each
test case there are numerous initial guesses. To generate different initial guesses for a particular test case
we first define an initial and final orbit. Next, we vary the true anomaly and the epoch for the initial
and final maneuvers. Given the times and positions of the initial and final maneuvers for a particular
initial guess, we solve Lambert’s problem to yield a two burn solution. A simple algorithm is used to
place small maneuvers along the two-burn trajectory arc to generate multiple maneuver solutions. In
the next three subsections we discuss the three test cases in more detail.

Case One

Test Case One is a simple circular-to-circular coplanar transfer. The optimal solution is simply the
Hohmann AV. The orbital elements for this test case are shown in Eqs.(40) and (41). The format for
the orbital elements is [ a € ¢ w 2 v | unless specified otherwise. Distance is measured in km, and angles
are measure in degrees.

Initial Orbit:  oe, =[700000000], T =0 (40)
Final Orbit:  oe; =[75000000M;], T =Ty (41)
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The AV for a Hohmann Transfer for Case One is 253.8 m/s. A set of initial guesses for case one is
generated by varying A, and Ty. We vary Afy from 90° to 270° in increments of 20°. For each value
of Af; we choose two values for Ty. For each pair of Ay and Ty we solve Lambert’s problem to obtain
a two-maneuver rendezvous for the initial to the final orbit. The values of Ty are chosen so that the
AV for the initial guess is less than 1.5 km/s. Note this is considerably higher than the known aptimal
solution. For each two burn solution we add small interior burns to create similar three and four burn
solutions. In summanry, there are nine different values for Ady, two differemt values of T for each My,
and a two, three and four burn solution for each pair of M; and Ty. Hence there are fifty four initial
guesses for Case One. A figure showing a sample of the initial guesses for Case One is shown in Figure

(4)-

Case Two

Figure 4: Sample of Initial Guesses for Case One and Two

Case Two

The second test case involves a combined maneuver that changes both the semimajor axis and the
inclination of the orbit. The orbital elements for Case Two are shown in Eqs. (42) and (43). The
eccentricity of both orbits is 0.3. The semimajor axis for the initial orbit is 7000 km, and the semimajor
axis for the final orbit is 8000 km. The initial orbit is equatorial, and has an argument of periapsis of 0°.

" Hence the five degree plane change is a rotation about the line of apsides. We generate 180 sets of initial

conditions by varying the position and epoch of the initial maneuver, v, and T, respectively, as well as
the position and epoch of the final maneuver, vf and Tj;. We vary v, from 300° to 40° in increments
of 20°. We vary vy from 140° to 220° in increments of 20°. These ranges are chosen because we know
the initial maneuver should occur near periapis, and the final maneuver should occur near apoapsis. For
each possible pair of v, and vy we choose two times of flight and compute two transfer trajectories that
result in a two-burn maneuver sequence with a total AV of less than 2 km/s. Three and four burn
maneuver sequences are generated from each two burn solution by putting small maneuvers, equally
spaced in time along the initial two burn sequence. Hence, there are thirty combinations of v, and vy,
two times of flight for each pair of v, and vy, and two, three and four burn sequence for each time of
flight resulting in one hundred and eighty initial guesses. A representative sample of the initial guesses
for Case Two are shown in Figure (4). Positions of the initial maneuvers are label by black asterisks.
Positions of the final maneuvers are marked by red circles.

T, (42)
(43)

Initial Orbit: oe, = [70000.3000 v, T
Final Orbit:  o0ey =[80000.35.000vs), T

—
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Case Three

Case three is a phasing maneuver sequence in a highlv elliptic orbit. The orbital elements for the
initial and final orbits are given in Eqgs.(44) and (45) where E, and E; are the eccentric anomalies of
the initial orbit and final orbit at times 7, and T; respectively. To generate a set of initial guesses for
Case Three we vary E, from 0° to 345° in increments of 13°. For each value of E, we calculate two
values of Ef such that there is a 30 minute separation in time between the initial and final orbits. The
first value of Ey, for a given E,, is calculated so that the final position is thirty minutes ahead of the
initial position. The second value of Ey, for a given E,. is calculated so that the final position is thirty
minutes behind the initial position. For each E; and E, pair we generate a two maneuver sequence by
solving Lambert's problem for an E; and E, pair knowing that At ig thirty minutes. Three and four
burn cases are generated by inserting small maneuvers along the two burn sequence. For Caze Three
there ig a total of 96 initial guesses.

Initial Orbit: oe, = [42000 0.8 10 0.0 0.0 F,]. Tr =17, (44}
Final Orbit: ~ oey =[4200008100.000FE:, T =T} (45)

The test cases developed above are intended to allow a comparison of the methods for rendezvous
sequences in different flight regimes. In the next section we present results that compare the converged
solutions for the six methods investigated in this paper.

RESULTS

Comparing the performance of the trajectory optimization methods studied in this work is non trivial.
To begin, we must develop some metrics that allow us to compare the solutions provided by the different
techniques. The ultimate goal is to provide an analyst with some insight into which technique to employ
for a given problem. So ultimately, we want to know which technique is most likely to converge to the
lowest AV cost. However, this is not the only important statistic. We are also interested in determining
the relative performance of different methods. For example, if one approach converges to a known
optimal 70% of the time, and a second approach converges to a known optimal 25% of the time, the
second approach may still be useful for several reasons. Firstly, for a given problem the hypothetical
method 1 will not converge to the known optimal 30% of the time. Hence we will need another approach.
Secondly, the hypothetical method 2 might converge to a slightly higher solution in terms of the AV
cost, but it might provide a solution that is better when other mission constraints are taken into account.

We employ two statistics to capture the relative performance of the different trajectory optimization
techniques. The first statistic is simply the percentage of initial guesses where a particular method yields
the lowest AV cost. We denote this statistic §;. For example, there are 54 initial guesses for Case One.
If fmincon converges to the lowest AV cost of all the techniques, for 10 of the initial guesses, then S; for
fmincon is 17.54%. According to this definition, the sum of the S; statistic for for all of the techniques
for a particular test case is 100%.

The second statistic we employ is intended to provide more insight into the relative performance of
the different techniques. For example, if SNOPT converges to a solution of 260 m/s for a particular
initial guess, and PVAT1 converges to a solution of 261 m/s for the same initial guess, then although
PVAT1 has a higher solution, it still performed well relative to SNOPT. This is not captured in the &;
statistic. We define a second statistic Sy, and define it as the percentage of initial guesses that converge
to within 5% of the lowest solution yielded by the six techniques for the particular initial guess. An
example makes this clear. Suppose we are comparing solutions from fminunc and fminsearch for a set of
three initial guesses. Suppose fminunc converges to 100 m/s for the first initial guess, and fminsearch
converges to 102 m/s for the first initial guess. For the second initial guess fminunc converges to 104
m/s and fminsearch converges to 120 m/s. For the third initial guess fminunc and fminsearch converge
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1o 110, and LUL mn/s respectively. For this set of solutions 85 fur fininsearch is 66.66%. whicli means that
66.66% of the time fminsearch converged to within the 3% of the lowest solution of all the methods.

Both the &y and S; statistic can be applied to the results in several ways. For example, if only
four-burn initial guesses are used in generating an S statistic, we add an additional subscript and call
the statistic Sz,. 1f all of the initial guesses are used for determining an Sy statistic, there is no additional
subscript. This convention is alse used for the S; stazistic.

In the next three subsections we present a performance comparison of the six techniques for each
of the three test cases. We use both the statistics described above. as well as graphical methads 10
lustrate how the techniques compare with one another.

Case One

Recall that Case One is a simple circular-te-circular coplanar rendezveus problem. Hence the optimal
solution is simply the Hohmann AV, which for the orbits defined in Eqs. {40) and {41) is 255.8 m/s.
A figure illustrating the results for all six optimization techniques we investigate is shown in Fig. 5.
The top subplot contains the solutions for all two burn maneuver sequences. The middle and bottom
subplots contain the solutions for all three and four burn solutions respectively. On each subplot the

_x-axis is the initial guess number. The initial guesses have been numbered in order of increasing AV.

This is done to enable one to draw conclusions as to the performance of each method as the AV of
initial guess increases. Furthermore, the initial guesses between the subplots are similar. For example,
the initial guess number one in the two-maneuver subplot is similar to initial guess number one in the
three-maneuver subplot. The difference being only that a small mid-course maneuver is placed along the
two-maneuver sequence to create a three maneuver sequence. The same is true for initial guess one of the
four-maneuver subplot. On all subplots the y-axis is the AV in km/s. Solutions for all direct methods
are plotted in black. Solutions for indirect methods are plotted in red. Statistics that aid in comparing
the results for each of method are found in Tablel. By inspection of Fig. 5 we see that the direct methods
outperformed the indirect methods. For all but one initial guess, the direct methods always converged
to within a few m/s of the known optimal solution for two-maneuver sequences. For three and four burn
sequences, fminsearch consistently had the poorest performance of the direct methods. In comparisons
between PVAT1 and PVAT2, PVAT2 performed better. Examining the &; statistics for Case One we
see SNOPT found the lowest solution most often at 35.09% of the time. The method with the second
best performance was fmincon, which found the lowest solution 31.58 % of the time. Examining the S,
statistics we see that both SQP methods converged to within 3% of the lowest solutioin at least 93% of
the time. It is also important to note that although other methods performed poorly in comparison to
SQP, about 33% of the time the lowest solution was found by a method other than SQP. This suggests
that although SPQ is the single best performing method for Case One, it is not safe to rely only on SQP
as an optimization approach. It is also important to note that although SPQ found the lowest solution
most often, solutions from other methods were often close to the solution found by SQP methods.

Table 1: Statistics: Case One Results

Sy Sy, S, S, Sa Sa, So, 8o,

fmincon 31.58 21.05 15.79 57.89 92.98 100 78.95 100
SNOPT  35.09 57.80 4211 5263 94.74 100 8947 94.74
fminunc  10.53 5263 5263 21.05 78.95 94.74 52.63 89.47
fminsearch 7.018 10.53 0.00 10.53 43.86 100 21.05 10.53
PVAT1 3.509 0.00 5.263 5263 71.93 94.74 4211 7895
PVAT2 12.28 5263 31.58 0.00 66.67 57.89 57.890 84.21
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Figure 5: Results for Case One
Case Two

The maneuver sequence in Case Two involves raising the semi-major axis and rotating about the line
of apsides, as well as satisfying the rendezvous conditions. Hence, two burn solutions will often perform
poorly. Figure 6 shows all of the converged solutions for Case T'wo. The results are plotted using
conventions identical to the results for Case One and we refer the reader to the previous subsection
for details. Table 2 summarizes the selected statistics for each method for Case Two. For the two-
burn sequences seen in the first subplot, PVAT?2 vielded the lowest AV about 48% of the time and
converged 71% of time within 5% of the lowest solution. PVAT?2 higher performance can be explained
by its unique ability compared to the other methods to add maneuvers to lower the AV cost. For the
two-burn sequences all methods, with the exception of PVAT?2, frequently converged to the same local
minimum. Note that PVAT1 did not perform as well as the direct methods for the two-burn sequences
as it converged only 29% of the time within 5% of the best solution. For three-burn sequences, SNOPT
and fmincon yielded to the lowest AV about 42% of the time and converged about 90% and 81% of the
time, respectively, within 5% of the lowest solution. For this set of initial guesses, PVAT?2 yielded the
worst results. Finally, for the four-burn sequence, fmincon out-performed all the other methods. fmincon
found the lowest solution 58% of the time and 93% of its converged solutions were within 5% of the lowest
AV cost. fminunc is the second best with about 16% and 64% for S; and S; respectively. SNOPT,
fminsearch and PVAT1 have comparable statistics for this initial gucss scquence. PVAT?2 performed
poorly compared to the other methods. Overall, we can see that, for Case Two, when there are more
than two-impulses, fmincon appears to be consistently better. However, for the two-burn sequence,
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PVAT2 dominates over the other inethod because of its ability to add impulses wo the trajectory.
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Figure 6: Results for Case Two
Table 2: Statistics Case Two Results
Sy Sy, S, Si1, So Sa, S22, Sa,
fmincon 31.58 9.677 41.94 58.06 T5.81 53.23 80.65 93.55
SNOPT 24.73 2258 41.94 9.677 56.99 4839 90.32 32.26
fminunc 6.452 1.613 1.613 16.13 50.00 4839 37.1 64.52
fminsearch 8.065 8.065 8.065 8.065 39.25 43.55 4516 29.03
PVAT1 7.527 9.677 4.839 8.065 34.41 29.03 41.94 3226
PVAT2 16.67 48.39 1.613 0.00 33.33 7097 17.74 11.29
Case Three

Recall that Case Three involves a phasing maneuver in a highly eccentric orbit which implies that
the initial guess is going to be critical in defining which optimal solution is achievable. This sequence

is a pure phasing maneuver where the number of revolutions is not to exceed one.

high eccentricity of the orbit, moving the initial and final epochs of the rendezvous will in some cases
change the trajectory dramatically making it more difficult to set the proper tolerances for the finite
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differencing t¢ compute accurate gradients. Figure 6 shiows all of the converged solutions for Case Three.
Table 3 summarizes the selected statistics for each method for Case Three. For both the three-burn and
four-burn sequences seen in the first subplot, all the indirect methods performed very poorlv. fmincon
outperformed all other methods with about 69% and 66.7% of the lowest solutions for the three-burn
sequence and the four-burn sequence respectivelv. For the three and four burn sequences. &y for fmincon
was 89.6% and 91.67% respectively. tminsearch and SNOPT were the direct methods with the lowest
performance rate for both burn sequences. Note that fminunc converged 62.5% of the time within 3% of
the best solution but was only the best method 10.42% of the time for the three-burn case. However, for
the four-burn sequence, fminunc statistics improved to a convergence rate of 91.67% within 5% of the
best solution and it found the lowest AV 22.92% of the time. Overall, fmincon and fininunc seem to be
the preferable methods for solving a Case Three type of rendezvous. All the other methods performed
very poorly.

TotalA V vs. Initial Guess Number
02 r T T T ! T i T i l

I

*  fmincon -i !
© SNOPT | 3 Burn Sequence
0.15 s fmannC i L . . . o
A fminsearch ) F
+ PVATI : : : =
01ll_o_ PVAT2 : : , o sEET@etR 4
. . . R .1;3%\‘—5 A AN
: : . e= A
aP2YA VAN
0.05F _ , ~ rm@ggﬁ@iﬁﬁéﬁ--‘-é- N -
2,580 papoaBBEERS s © A A4
é%a%é f@@*@gktﬂﬁtt‘ttt*g*t*ttttﬂoccﬁécﬁéﬁ Q0%
0 1L L | i
0 5 10 15 20 25 30 35 40 45 50
Initial Guess Number
0.1 T
* fmincon ' ¥ T ] ;‘I = YXA =0
o snopt | 4 Burn Sequence. = ; -
A iminsearch : A“~
oosl + PVATI | o . g &5s © N
“ClLo PVAT2 | : .9 A A o B
. B EOA o)
A : ; :
0.04 % ...... E QQOAQ 8‘A A e BAN @ —
§ @ g 521 B : 5= g & g“
0.02_ ..................... O g - —
é*é@%aé&ttﬁﬁ@ttgttta*0*‘*9*0&*:0?*# :55 g% Sa
L
0 { L 1 l | | L l Il
0 5 10 15 20 25 30 35 40 45 50

Initial Guess Number

Figure 7: Results for Case One

Table 3: Statistics: Case Three Results
S S, Sy, Sy 8o, Sa,
fmincon 67.71 68.75 66.67 90.63 89.58 91.67
SNOPT 11.46 1667 6.25 25.00 25.00 25.00
fminunc 16.67 1042 2292 75.00 62.50 87.50
fminsearch 4.167 4.167 4.167 9.375 6.25 12.50
PVAT1 0.00 0.00 0.00 10.42 833 12.50
PVAT2 0.00 000 000 10.42 833 1250
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CONCLUSIONS AND FUTURE WORK

The minimum fuel rendezvous problem has received extensive attention in the literature. There are
two primary methods to solving the problem: direct and indirect. However, many mnethods are actually
a hybrid between a direct and indirect approach.

In this work we compared several approaches for finding optimal rendezvous soluticns. We comparad
several parameterizations for an objective function for a direct approach, and chose the one that appeared
the best after some preliminary comparisons. We applied four numerical optimization routines to the
direct method parameterization. It is important to note that finite differencing was used to calculate
gradients for the gradient-based direct methods. Providing analvtic gradients is a topic of current
research and will likely imiprove both the rate of convergence. and the fiual values of the firal converged
solutions. '

We also developed two indirect approachies. The indirect approaches were based on primer vector
theory. The frst approach does not allow additional impulses higher than the number of impulses
contained in the initial guess. The second approach will include an additional impulse if the optimality
conditions suggest that it will result in a AV reduction. '

Ideally, from a software maintenance point of view, it is desirable for one method to always excel
over competing methods. However, in this work we found that no single method was always the best.
Yet, there are certain methods that outperform rival methods a significant amount of time. In general,
in comparing direct approaches, SQP outperformed other methods such as Quasi-Newton, and Nelder-
Meade Simplex. However, these results are intimately dependent on the parameterization of the objective
function. For alternative parameterizations, SQP might not necessarily outperform other methods.

In comparisons between the direct and indirect approaches we implemented, we found that the
direct approaches tended to find lower solutions more often. However, there were a significant number
of cases where indirect methods outperformed direct approaches. Therefore, we cannot simply discard
the indirect approaches in favor of the direct approaches.

REFERENCES

[1] J. Betts, “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Con-
trol and Dynamics, Vol. 21, March-April 1998, pp. 193-207.

[2] D. Jezewski, J. Brazzel, E. Prust, B. Brown, T. Mulder, and D. Wissinger, “A Survey of Rendezvous
Trajectory Planning,” AAS/AIAA Astrodynamics Specialists Conference, Durango, Colorado, Au-
gust 1991. AAS 91-505.

[3] S. Rao, Engineering Optimization: Theory and Practice. Wiley-Interscience, third ed., 1996.

[4) R. Brusch, “Constrained Impulsive Trajectory Optimization for Orbit-to-Orbit Transfer,” Journal
of Guidance and Control, Vol. 2, May-June 1979, pp. 204-212.

[5] R. Serban, W. Koon, M. Lo, J. Marsden, L. Petzold, S. Ross, and R. Wilson, “Optimal Control for
Halo Orbit Missions,” IFAC Workshop on Langrangien end Hamiltonian Methods for Nonlinear
Control, Princeton, New Jersey, Princeton University, March 16-18 2000.

[6] J. Guzman, L. Mailhe, C. Schiff, S. Hughes, and D. Folta, “Primer Vector Optimization: Survey
of Theory, New Analysis and Applications,” 58rd International Astronautical Congress, Houston,
Texas, October 2002. IAC-02-A.6.09.

[7] T. MathWorks, “Optimization Toolbox Documentation,” http://www.mathworks.com.

18



5] POE. Gilll W AMarray, and ML AL Saunders, “User’s Guide for SNOPT 5.50 A Fortran Package for
Large-Scale NonLinear Programming.” December 1998,

9] D. F. Lawden. Optimal Trajectories for Spoce Navigation. London: Butterworths. 1963
9] gt 7 [

[10] K. C. Howell and H. J. Pernicka. “Numerical Determination of Lissajone Trajectories in The Re
stricted Three-Body Problem,” Celestial Mechanics, Vol. 41, 1988, pp. 107-124.

(11] J. J. Guzman, Spacecraft Trajectory Design in the Context of a Coherent Restricted Four-Body
Problem. Ph.D. Dissertation, Purdue University. Mav 2001.

{12] G. Gedeon. “A Practical Note ou the Use of Lambert’s Equation,” AlAA4 Jowrnal. Vol. 3. No. 1.
1965. pp. 149-150.

131 . 8. J. Guzman, L. Mailhe, S. Hughes. D. Folta, and S. Schiff, “Primer Vector Optimization:
Survey of Theorv and Some Applications.” TAF Conference, Houston, Octoher 2002,

i14] D. F. Lawden. Impulsive Transfer Between Elliptic Orbits, pp. 323-351. Optimization Techniques,
New York: Academy Press, 1962. edited by G. Leitman.

{13} P. M. Lion and M. Handelsman, “Primer Vector on Fixed-Time Impulsive Trajectories,” AI4A4,
Vol. 6, January 1968, pp. 127-132.

[16] D. J. Jezewski and H. Rozendaal, “An Efficient Method for Calculating Optimal Free-Space N-
Impulse Trajectories,” AIAA Journal, December 1967, pp. 2160-2165. \

[17] L. A. Hiday, Optimal Transfers Between Libration-Point Orbits in the Elliptical Restricted Three-
Body Problem. Ph.D. Dissertation, Purdue University, August 1992. ’

[18] R. G. Stern, “Singularities in The Analytic Solution of the Linearized Variational Equations of
Elliptical Motion,” AIAA, July, 11964, pp. 1-13.

APPENDIX 1

There are numerous considerations to take into account when selecting an objective function param-
eterization for a direct method. In this work we break down the types of parameterizations into two
categories called the Feasible Iterate Approach, and the Infeasible Iterate Approach. In the Feasible
Iterate Approach the cost function is parameterized in such a way that the rendezvous constraints are
satisfied implicitly for each cost function evaluation. Using a Feasible Iterate Approach allows one to
choose between both constrained and unconstrained numerical optimization packages. However, we must
provide a robust way to solve the TPBVP. In the Infeasible Iterate Approach the rendezvous constraints
are not necessarily satisfied for each cost function evaluation. The rendezvous conditions are satisfied
upon convergence of the numerical optimization routine. The strength of the Infeasible Iterate Approach
is that we do not have to provide a robust TPBVP algorithm. However, it is necessary that we use only
constrained optimization packages. Hence, in the Feasible Iterate Approach we are in a sense applying
a change of variables to convert a constrained problem into an unconstrained problem. In this appendix
we present one possible parameterization for each category to illustrate some differences in the methods.
One possible parameterization of the Infeasible Iterate Approach is

Given: (ro,vo.t,) and (ry, vy, ty) (46)

Choose the independent variables:
t  i=12.n (47)
r; i=1,23.n (48)
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require the optimizer 1o satisfv the {following constraints

<

(49)
(50}

r —-f(ro,vofo‘tl) =

(e}

r, —f(rf,Vf.ff.f1,) =

Given BEqgs. (47) and (48). the entire maneuver sequence is defined. By solving Lambert’s problem for
each trajectorv segment we can calculate the total AV,

Although many parameterizations of the Feasible [terate Approach are possible. we only present one
here. One possible parameterization is

Given: {r..v,.to) and {re. vt} {317

Choose the independent variables:

i

i 1

1.2, ..,n
AV, =12

i

an=-2

For the this parameterization the entire maneuver sequence is determined and we can solve for the total
AV and satisfy the boundary conditions simultaneously. We first determine ry, and v; from Eqgs.(13)
and (14). The next step is to solve n — 2 initial value problems by iterating on the following algorithm

fori=1ton—2

vi = V[ +AV | (54)
rign = f(r, vt tig) - (55)
vig = glri, vt tia) (56)

end
Finally we ensure the rendezvous conditions are satisfied by solving Lambert‘s problem for r,,—;, rp, and
At = t, —t,.;. With the solution for Lambert’s problem we can solve for AV, _; and AV}, and we then
solve Eq. (19) for the total AV. There are many more possible choices for independent variables that
fall under the Feasible Iterate Approach. Presenting all of the possibilities is beyond the scope of this
work. However, 1t is worth mentioning that other Feasible Iterate Approaches are likely to be a hybrid
of the method described by Egs.(20), (21) and (22) or the method described by Eqgs.(51)}, (52) and (53).

Choosing a specific parameterization for the objective function is nontrivial. Each of the parame-
terizations discussed above have some strengths and some weaknesses. Although a detailed comparison
of the Feasible Iterate Approach and the Infeasible Iterate Approach is beyond the scope of this work,
preliminary comparisons suggest that the Feasible Iterate Approach performs better. This is expected
because it is often better to convert a constrained problem to an equivalent unconstrained problem if an
appropriate change of variables is possible. Therefore we have chosen to consider only Feasibie Iterate
parameterizations. Choosing a specific parameterization of the Feasible Iterate Approach is also non-
trivial. For this paper we choose to parameterize the objective function using the independent variables
given in Egs.(20), (21) and (22). The justification for choosing this parameterization is discussed in a
previous section. :
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